p16 Gene Transfer Induces Centrosome Amplification and Abnormal Nucleation Associated with Survivin Downregulation in Glioma Cells.

نویسندگان

  • Takeshi Takayasu
  • Seiji Hama
  • Fumiyuki Yamasaki
  • Taiichi Saito
  • Yosuke Watanabe
  • Ryo Nosaka
  • Kazuhiko Sugiyama
  • Kaoru Kurisu
چکیده

OBJECTIVE In human glioma cells, p16 gene transfer induced G1/S arrest, increased radiosensitivity and abnormal nucleation (especially bi- and multinucleation). Survivin suppression caused G2/M arrest, radiosensitization and an increase in aneuploidy accompanied by centrosome amplification. Abnormal nucleation and aneuploidy represent chromosome instability (CIN), and it is well known that centrosome amplification leads to CIN. However, little has been reported that suggests that transferring p16 causes centrosome overduplication during the G1/S phase. METHODS The p16 gene was transferred into p16-null human glioma cell lines (U251MG and D54MG) using adenovirus with or without irradiation. Centrosome amplification was evaluated by immunofluorescence. We also investigated the DNA replication licensing factor CDT1, its inhibitor geminin and survivin expression as regulators of chromosomal segregation. RESULTS p16 gene transfer with radiation initiated the greatest degree of centrosome overduplication. CDT1 showed low levels, geminin was unchanged and survivin decreased in Ax-hp16-infected cells with radiation. Those changes of factors affecting DNA licensing or chromosomal segregation might contribute to CIN. CONCLUSION p16 transfer caused centrosome amplification even in G1/S phase-arrested cells. This suggests that p16 is involved in abnormal nucleation and radiosensitization in human glioma cells. © 2015 S. Karger AG, Basel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells.

Microtubule nucleation requires the γ-tubulin ring complex, and during the M-phase (mitosis) this complex accumulates at the centrosome to support mitotic spindle formation. The posttranslational modification of γ-tubulin through ubiquitination is vital for regulating microtubule nucleation and centrosome duplication. Blocking the BRCA1/BARD1-dependent ubiquitination of γ-tubulin causes centros...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

β-elemene induces glioma cell apoptosis by downregulating survivin and its interaction with hepatitis B X-interacting protein.

β-elemene, extracted from the ginger plant, possesses antitumor activity against a broad range of cancers clinically. However, the mechanism underlying β-elemene-induced cytotoxicity remains incompletely understood. Here, we show that β-elemene promoted apoptotic cell death in human glioma cells, downregulated survivin gene expression, and induced...

متن کامل

Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation.

Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary and systemic disorder associated with various cardiovascular complications. It has been implicated with dysfunction in primary cilia. We and others have shown that the immediate function of endothelial cilia is to sense extracellular signal. The long-term function of cilia is hypothesized to regulate cell cycle. ...

متن کامل

CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation.

Centrosome amplification is frequently reported in human cancers, although the molecular mechanisms that are responsible for this remain unclear. There is significant evidence to support a role for cyclin-dependent kinase (CDK)-cyclin complexes in centrosome duplication. The activities of CDK-cyclin complexes are, in turn, regulated by the CDC25 family of phosphatases in a strict spatiotemporal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pathobiology : journal of immunopathology, molecular and cellular biology

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 2015